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Given the attainable set of utility outcomes for a market (with
3 finitely many traders), its complexity is defined to be the least number
\
E: of commodities needed for any market giving the same set. This notion

is investigated both in the case of quasiconcave and concave utility

e A

functions. It is shown that, in either case, there is a dense collection

of attainable sets having complexity at most n(n-1)/2.
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~able set a market of low "complexity" (that is, a market involving as small

a number of commodities as possible).

S

4
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1. Introduction. The question of which n-person cooperative games can
arise from economic markets has generated much recent interest. One aspect
of this question concerns representations of "attainable sets" of markets.

In particular, representations are sought which associate with an attain-

- Two classes of markets have been considered in some detail. The
broader class consists of markets in which all of the traders' utility
functions are upper-semicontinuous and quasiconcave. We shall show that

all n-dimensional attainable sets of two recently-studied types arising

from such markets can be represented by n-trader markets involving at most
n(n-1)/2 commodities. A consequence of this is that there is a collection
of attainable sets, each of complexity at most n(n-1)/2, which is dense in
the collection of all n-dimensional attainable sets.

A natural subclass of markets consists of those in which the traders'’
utility functions are continuous and concave. It is known that the
n-dimensional attainable sets of such markets are precisely the convex,
compactly generated sets in R". An upper bound on the complexity of these
sets, due to Kalai and Smorodinsky [3], is (n-l)2 - (n-2). In this case
also, we show that a dense collection of such n-dimensional attainable sets
has complexity bounded by n(n-1)/2. This has been conjectured to be the
upper bound over all n-dimensional attainableAsets.

Consider a market consisting of a set of traders N = {1,2,...,n},
and an m-dimensional commodity space I = {(y seeesyy): 02y, 21
for all i}. (We take Io = Ro = {0}.) For any collection {ui}?=1 of
utility functions of the traders (real-valued functions on Im), the

attainable set of the market is
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A(ul,...,un) = {xeR": x :-(ul(yl),...,un(yn)), where

each y eI™ and Zyl - TR 1 - ‘ §

This is the set of all utility outcomes which can be achieved by some

distribution of the available commodities among the traders.

A set X in R" is the comprehensive hull of another set Y if

X = {xeR": x <y for some yeY}; in this case, we say that X is
(comprehensively) generated by Y. It is not difficult to show that if

u -su  are upper-semicontinuous and bounded, then A(ul,...,un) is

10
compactly generated (generated by a compact set).

Let U, be the collection of all upper-semicontinuous, quasiconcave

j 3
utility functions, and let 02 be the subcollection of all continuous,

concave utility functions. For k = 1,2, let Ak(n) be the collection
of all n-dimensional attainable sets of markets in which the traders'
utility functions are in Uy - The extent of Al(n) was investigated in
(4], [5], (6] and [7]; in [1], the sets in A,(n) were characterized as
all sets which are generated by convex, compact sets.

Let V be an attainable set in Ak(n). If ul,...,un are functions
in 'Uk defined on I" (for some fixed m), such that V = A(ul,...,un),
then {ui}2=1 will be called a k-representation for V over I'. The

k-complexity of V is the least m > 0 such that there exists a

k-representation for V over I". We use comp V to denote the k-complexity

of V; the context will make it clear whether k is 1 or 2.




2. Quasiconcave markets. In this section, we consider the attainable sets

of markets in which all traders' utility functions are upper-semicontinuous
ff{ and quasiéoncave. Therefore, we direct our attention to l-representations
;ﬁ; and l-complexity. Without loss of generality, we assume that all
n-dimensional attainable sets under consideration are comprehensively

generated by compact sets lying in the interior of the unit n-cube i

i AR REE s

" be the "corner" generated by the point (1,...,1,0)eRk. In (6]

and [7], n-dimensional attainable sets were represented by utility functions

Let D

obtained from constructions which first represented (over In—l) the unions

of these sets with Dn’ This makes the following result of value.

kSR b iy
T a2 L

Theorem 2.1: Let V Dbe generated by a nonempty compact set in

f L For 1 &k <, Jet vy = {xeR": (x;0)eV} and let Vi = Vp uD. If
ﬁ each V, is an attainable set (in A,(k)), then V is an attainable set
! n

3 (in Al(n)), and comp V < } comp Vyr

k=1
k k
Proof:. Let ¢, = comp V., and c = ch; Assume that L A(ul,...,uk),

.

k) are defined on 1 k. Represent any xeI® as

c g
x= (lx,...,nx), where ker k. Define ui(x) = min (u;(lx),...,ug(nx)).

A

where all u? (1<i

v o S

We shall verify that V = A(ul,...,un), from which the upper bound on the
complexity of V follows immediately.

Consider any 2z = (zl,...,zn) € A(ul,...,un). There is some allocation
(xl,...,xn), with each xieIc and in = (1,...,1), such that ui(xi) >z

for all 1 < i < n. Therefore, by definition, ui(jxl) >z for all j > i.

k)

Hence, z( = (zl,...,zk)evk for all 1 <k <n. If z(k) ¢ V', then

z(k) < (1,...,1,0) and therefore 2, < 0. Let k = max (0, {k: z(k)eVi}).

(k)EYL
(x) *
z < (2" ";0)eV. In either case, we conclude that 2zeV (and , indeed,

1f k=0, then 2z < (0,...,0)eV. If k > 0, then z and

i

’ kX = n ) and therefore V > A(ul,....un).




(k)
On the other hand, given any zeV, it follows that each =z =

(zl....,zk) e V! cV . For each 1<k <n, let (kxl,...,kxk) be an

k k
Jiie s
allocation, with each kxleI k and Zikxl (1,...,1), such that

z(k) A (ui(kxl),...,ut(kxk))evk. Define xi = (O;ixi,...,nxi)elc for each

1<i<n. Then z < (ul(xl),...,un(xn)), and therefore V c A(ul,...,un).
Finally, it may be observed that the construction of each uy from

the u? (k > i) preserves both upper-semicontinuity and quasiéoncavity.

This completes the proof of the theorem.

Aset VcR" is finitely generated if it is the comprehensive hull

of a finite set (that is, if V is the union of a finite number of corners);

V is convexifiable if it is compactly generated-and there exists a col-

lection {gl;...,gn} of strictly ipcreasing, continuous functions such that .

- n'
V{gl,...,gn} {xeR": x < (g,(y;)s-+.,8 (y.)) for some yeV}

is convex.

Let V be generated by a set in I". It has been shown that if V

is finitely generated (see [6]) or convexifiable (see [7]), then v is

»
an attainable set of complexity at most n-1. Since these properties, of
‘being finitely generated or of being convexifiable, are inherited by all

Vi(l < k < n), an application of the theorem yields the following result.

Corollary 2.2: If» v cRrR" is finitely generated or convexifiable,
then V is an attainable set (in Al(n)), and comp V < n(n-1)/2.

Since the finitely generated sets are (Hausdorff) dense in Al(n)
([2, Theorem 2]), we can state the following.

Corollary 2.3: Al(n) has a dense subset consisting of attainable

sets of (1-) complexity no greater than n(n-1)/2.




3. Concave markets. We now turn our attention to the attainable sets of

markets in which all traders' utility functions are continuous and concave,
and in consequence we cohsider 2-representations and 2-complexity. Without
loss of generality, we continue to assume that all n-dimensional attainable
sets under consideration are generated by (convex, compact) sets lying in
the interior of I". For any h > 0, let Dk(h) be the corner generated
by the point (1,...,1,-h)eRk. In [1], n-dimensional attainable sets were
represented by utility functions obtained from contructions which first
represented (over In-l) the convex hulls of the unions of these sets with
sets Dn(h), for large values of h. Therefore, a variation of the theorem
of the previous section will be broadly applicable.

Let V be generated by a convex compact set in In, énd, as before,

k

= {xeRk: (x30)eV}. For 2 <k <n, let Vi_l x RL = {xeR™:

100 9% V'k_l} be a cylinder with cross-section Vi_l. We define
1 1

V6 = {0} and Vb x R = R'. For any h > 0, define Vk(h) to be the

(comprehensive) convex hull of Vﬁ v Dk(h). Each Vk(b) is generated by ]

a convex compact set, and is therefore an attainable set (in A2(k)).

1
let Vk

N
5% ' (x ) €

We say V is resolved by a sequence of non-negative numbers hl,...,hn :

3 1 " s
if for all 1 <k < n, Vk(hk) n (V}'c_l x R7) = VL; in this case, we say V

i i oA S sl S e ek e e

is resolvable.

Theorem 3.1: Let V be generated by a convex compact set in ™.

Assume that V is resolved by hl”"’h

n
o+ Then comp V < kzl comp V, (h ) < ;

n(n-1)/2.

Proof. We begin as in the proof of Theorem 2.1. Let ¢, = comp vk(hk)’

=

(1 <ic<k)

[

a = k k
and c¢ = ch. Assume that vk(hk) = A(u ,...,:k), where all u

are continuous concave functions defined on I k. Write erc as

PP R 0,




c ik
X = (lx,...,nx), where ker k.\ Define ui(x) = min (u;(lx),...,uz(nx)).

The construction of the functions Upseeesly yields continuous concave
functions on IS. Therefore, it will suffice to verify that

V = A(ul,...,un).
(k)

Consider any 2z = (z .,zn) e A(u .,un). Then each =z =

12" 12°"

(zl,...,zk) € vk(hk)' Assume that, for some 2 < k < n, z(k) ¢ Vi.

1
2 s ' =
Since V 1is resolved by hl""’hn’ Vk(hk) n (Vk_l x R7) =V

K3 therefore
(k-1)

z(k) ¢ Vi_l x Rl, and hence z PA Now, assume that

k-1°
z ¢V = V;. From the result just established, it follows inductively

that z(k) ¢ Vi for all 1 <k <n. But z(l)

eVl(hl) = V1. This
cor iction affirms that zeV. Therefore, V o A(ul,...,un).
he other hand, it follows as in the proof of Theorem 2.1 that

ul,...,un). Therefore V = A(ul,...,un), and the complexity of V
is no greater than c = E comp Vk(hk)' The second inequality follows
from the observation that-;or any h > 0, comp Vk(h) < (k-1); see.[l].

In the remainder of this section, we will show that there is a dense
(in the sense of the Hausdorff distance) collection of resolvable
n-dimensional attainable sets. This class consists bf those attainable
sets having a (uniformly) positive normal at every nonnegative boundary
points; these will be referred to as positively supported sets. Speci-
fically, an n-dimensional attainable set V is said to be (uniformly)
positively supported if there exists a closed set Q c {qeRnl ? q; = 1, q > 0}

i=1
so that for each xedV n R:, there is a qeQ for which (x,g) 2 (y,q)

for all yeV. Here 9V denotes the boundary of V, R:, the nonnegative

orthant in Rn, and (¢, *), the usual inner product on R".)

Lemma 3.2: If V is positively supported then V is resolvable.

e i il Rl i i e S
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E‘ Proof: Let Q be the set of normals specified in the definition. Let
Ei , hl =0 and, for 2 < k < n, let hk =max { [ q./qqueQ} > 0. We shall
i i<k
E‘ - show that V is resolved by the sequence hl’h2""’hn' Since, for
i
EH 1 <k < n, we always hgve
B
1
' '
i Vk(hk) n (vk-l x R7) o Vk (3.2.1)
3
:J
H and, for k = 1, equality is clear, it is enough to show the other
2 1 inclusion for k > 2.
i Suppose xeRk is an element of the left-hand side of (3.2.1). If
3 $ ' '
% ; x <0, then since (xl,...,xk_l) € vk-l’ we must have (xl,...,xk_l,O) € Vk
: and so x e Vy. If x > 0, then since x € vk(hk)’ we must have x < X
k
3 where

o
fla
x|
1

Ay + (1-1) (l,l,...,l,-hk) € vk(hk)’ (3.2.2)

K " R’: and 0 < X < 1. We show 'iev,;, and so er}'( by comprehensiveness.

If x ¢V1'< then there exists veavl'(, 0<v ;;, v # x. Since

yeV!

(v;0)€dV n R:, there is a qeQ so that

&.q(k)) > (v,q(k)) L (z,q(k)) (3.2.3)

for all zeV!, where q(k)

X = (ql,...,qk) > 0. Further,

e e

(Vsq(k)) 202 .Z qi - hqu = ((lgls--"ls"hk)aq(k)>

i<k

S0 (v,q(k)) [ A (z.q(k)) for all zeV,(h ). This contradicts (3.2.2) and {
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(3.2.2), establishing ;EV&. In either case, we have erL and thus have

shown (3.2.1) to be an equality, completing the proof.

It seems intuitively clear that the positively supported attainable
sets are dense among all such sets. We outline a proof here for complete-
ness. We denote by d the Hausdorff distance induced by the norm
Hox [] = max |x;].

1<i<m
Suppose V is an n-dimensional attainable set (generated by a compact

n

. convex subset of I ). We can write

{xeR"| x,p) < o for pes}

n
where g = {peRnI z p. =1} and a_ = sup (x,p). Note that a_, the
S e R 2] - P
i=1 xeV
support function of V, varies continuously for peS. For O < € < 1/n,

define

' n n
{xeR+| (x,p) < o for peQ®} - R,

where QF = {qeslqi > ¢ for all i}.
Lemma 3.3: The sets V¢ are positively supported and d(V,Ve) + 0 as

€ >0,

€ n s €
Proof: V€ is positively supported since for x€3V' n R+, there is a p€Q

- 3 b 3
such that (x,p) = up 3_<y,p> for all erE (otherwise x would be in
€
the interior of V ).
Since d(v,vV¢) <d(Van R?, v n R:) and V€ > V, it is enough

show that, given n > 0, there is ¢ > 0 so that for € < € and

e O T4 Oy e Y A o W T 3T Y g Aty et o




xeV\V, x > 0, there is yeV, y > 0 so that ||x - y|| <n.
Let ¢o - 1/2n. The function f(z,p) =~(z,p) - o is uniformly
continuous over (V€ n R?) x § and so there is an € < €° so that for
zeVE®, 2 > 0, and p,qeS, we have ||q - p|| <€ implies |£(z,q) - £(z,p)| <n.
Take € < € and ere\V, X > 0. Let qeS maximize f(x,p) over S.

Since erC\V, § = f(x,q) > 0 but f(x,p) < 0 for peQe. Now let

=
+

z=x - (6§,8,...,8). Then 2zeV and y = 2z €Vn R: where (z+)i = max(zi,o).

Further z <y < x, so
% - vl

proving the lemma.

Combining (3.2) and (3.3), we have our final result.

Theorem 3.4: A2(n) has a dense subset consisting of attainable sets of

(2-) complexity no greater than n(n-1)/2.
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